Acute Smc5/6 depletion reveals its primary role in rDNA replication by restraining recombination at fork pausing sites

نویسندگان

  • Xiao P Peng
  • Shelly Lim
  • Shibai Li
  • Lisette Marjavaara
  • Andrei Chabes
  • Xiaolan Zhao
چکیده

Smc5/6, a member of the conserved SMC family of complexes, is essential for growth in most organisms. Its exact functions in a mitotic cell cycle are controversial, as chronic Smc5/6 loss-of-function alleles produce varying phenotypes. To circumvent this issue, we acutely depleted Smc5/6 in budding yeast and determined the first cell cycle consequences of Smc5/6 removal. We found a striking primary defect in replication of the ribosomal DNA (rDNA) array. Each rDNA repeat contains a programmed replication fork barrier (RFB) established by the Fob1 protein. Fob1 removal improves rDNA replication in Smc5/6 depleted cells, implicating Smc5/6 in the management of programmed fork pausing. A similar improvement is achieved by removing the DNA helicase Mph1 whose recombinogenic activity can be inhibited by Smc5/6 under DNA damage conditions. DNA 2D gel analyses further show that Smc5/6 loss increases recombination structures at RFB regions; moreover, mph1∆ and fob1∆ similarly reduce this accumulation. These findings point to an important mitotic role for Smc5/6 in restraining recombination events when protein barriers in rDNA stall replication forks. As rDNA maintenance influences multiple essential cellular processes, Smc5/6 likely links rDNA stability to overall mitotic growth.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Smc5/6 maintains stalled replication forks in a recombination-competent conformation.

The Smc5/6 structural maintenance of chromosomes complex is required for efficient homologous recombination (HR). Defects in Smc5/6 result in chromosome mis-segregation and fragmentation. By characterising two Schizosaccharomyces pombe smc6 mutants, we define two separate functions for Smc5/6 in HR. The first represents the previously described defect in processing recombination-dependent DNA i...

متن کامل

During replication stress, non-SMC element 5 (NSE5) is required for Smc5/6 protein complex functionality at stalled forks.

The Smc5/6 complex belongs to the SMC (structural maintenance of chromosomes) family, which also includes cohesin and condensin. In Saccharomyces cerevisiae, the Smc5/6 complex contains six essential non-Smc elements, Nse1-6. Very little is known about how these additional elements contribute to complex function except for Nse2/Mms21, which is an E3 small ubiquitin-like modifier (SUMO) ligase i...

متن کامل

Dna2 helicase/nuclease causes replicative fork stalling and double-strand breaks in the ribosomal DNA of Saccharomyces cerevisiae.

We have proposed that faulty processing of arrested replication forks leads to increases in recombination and chromosome instability in Saccharomyces cerevisiae and contributes to the shortened lifespan of dna2 mutants. Now we use the ribosomal DNA locus, which is a good model for all stages of DNA replication, to test this hypothesis. We show directly that DNA replication pausing at the riboso...

متن کامل

Rad22Rad52-dependent repair of ribosomal DNA repeats cleaved by Slx1-Slx4 endonuclease.

Slx1 and Slx4 are subunits of a structure-specific DNA endonuclease that is found in Saccharomyces cerevisiae, Schizosaccharomyces pombe, and other eukaryotic species. It is thought to initiate recombination events or process recombination structures that occur during the replication of the tandem repeats of the ribosomal DNA (rDNA) locus. Here, we present evidence that fission yeast Slx1-Slx4 ...

متن کامل

The Yin and Yang of the MMS21-SMC5/6 SUMO ligase complex in homologous recombination.

Maintaining genomic stability is critical for the prevention of disease. Numerous DNA repair pathways help to maintain genomic stability by correcting potentially lethal or disease-causing lesions to our genomes. Mounting evidence suggests that the post-translational modification sumoylation plays an important regulatory role in several aspects of DNA repair. The E3 SUMO ligase MMS21/NSE2 has g...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره 14  شماره 

صفحات  -

تاریخ انتشار 2018